
HANK in Continuous Time

Adrien Bilal

Stanford University

June 2025



Introduction

• So far in workshop saw how to handle workhorse HANK model in discrete time

▶ Though paper coining ‘HANK’ developed in continuous time! (Kaplan et al. 2018)

• Continuous time has several attractive properties for heterogeneous agent models

▶ Efficient calculation of steady-state with finite differences (Achdou et al. 2022)

▶ Seamlessly handles nonconvexities (Kaplan et al. 2018): kinks in interest rates, fixed portfolio costs

▶ Sometimes can gain more pen-and-paper traction

• What does a sequence-space approach to HANK in continuous time look like?

▶ Retain fast transitions and low memory requirements?

▶ Additional benefits in continuous time?

1 / 29



This lecture
Based on Bilal and Goyal “Some Pleasant Sequence-Space Arithmetic in Continuous Time” (2025)

• Set up standard HANK economy in continuous time

▶ Individual decision problem: backward PDE

▶ Law of motion: forward PDE

• Develop sequence space Jacobians in continuous time

▶ Main payoff of continuous time: characterize policy functions analytically w/ backward PDE

▶ Rest of SSJ construction as in Auclert et al. (2021)

▶ Approach applies to much more general settings

• Discuss implementation and discretization (time permitting)

• Leverage analytical characterization: 3x speed gain

2 / 29



Literature

• Perturbation methods for heterogeneous agent macro in discrete time: Reiter (2008), Ahn et al.
(2018), Auclert et al. (2021), Bhandari et al. (2024)

▶ Develop and characterize SSJ in continuous time

• Perturbation methods for heterogeneous macro in continuous time: Bilal (2023), Glawion (2023)

▶ Sequence space rather than state space (Bilal 2023)

▶ Does not rely on discretizing state/time first & derive PDE for policy functions (Glawion 2023)

▶ If interested in second-order perturbations: Bilal (2023)

3 / 29



Setup



Household decision problem

• Consider continuous-time version of setup seen so far

• Budget constraint: dat = (rtat + Xty
1−θ
t − ct)dt, where

▶ at denotes assets, ct consumption,

▶ post-tax income satisfies Xty
1−θ
t = τt(wtytnt)

1−θ,
´
y 1−θ
jt dj ≡ 1, Xt = Yt − Tt

• Borrowing constraint: at ≥ a

• For exposition use income process with discrete states {y1, ..., yJ} and transition rates λij

• Hamilton-Jacobi-Bellman (HJB) equation:

ρVit(a) = max
c≥0

u(c)− v(nit(a)) +

continuation value
from changes in

own assets and prod.︷ ︸︸ ︷
Lit(a, c)[Vt ] +

continuation value
from changes in
prices rt ,Xt︷ ︸︸ ︷

Et

[
dVit(a)

dt

]

Lit(a, c)[V ] ≡
(
rta+ Xty

1−θ
i − c

)︸ ︷︷ ︸
savings rate

∂Vi (a)

∂a︸ ︷︷ ︸
continuation value

from changes in assets

+
∑
j

λij(Vj(a)− Vi (a))︸ ︷︷ ︸
continuation value from
changes in productivity

4 / 29



Occasionally binding borrowing constraints

• Handling borrowing constraints is very tractable in continuous time

▶ In continuous time at+dt = at + Sit(at)dt is close to at
▶ So only households exactly at at = a behave behave as constrained

▶ Different from discrete time where households in some interval [a, ã) behave as constrained

• Tractably incorporate borrowing constraint as restriction on value function

▶ Turns out that consumption FOC always holds with equality, even at a:

u′(cit(a)) =
∂Vit(a)

∂a
, for all a ≥ a

▶ Because value function adjusts so that assets do not cross a: cit(a) ≤ rta+ Xty
1−θ
i , that is:

∂Vit(a)

∂a
≥ u′

(
rta+ Xty

1−θ
i

)

5 / 29



Evolution of distribution
• Law of motion (Kolmogorov Forward) equation:

dgit(a)

dt
= − ∂

∂a

(
Sit(a)git(a)

)
︸ ︷︷ ︸

savings

+
∑
k

gkt(a)λki︸ ︷︷ ︸
inflow from

other prod. states

− git(a)
∑
j

λij︸ ︷︷ ︸
outflow to

other prod. states

≡ L∗
it(a, cit(a))[gt ]

▶ Sit(a) = rta+ yi − cit(a): savings rate; cit(a): consumption

▶ L∗
i (a)[·] denotes the adjoint (transpose) of functional operator Li (a)[·]

▶ As such holds for a > a

• To extend this formula to a = a need to introduce a base measure dν(a)
▶ Let git(a) be the density of households with respect to base measure dν(a) = δa(a)⊕ da

▶ δa(a): Dirac mass point. git(a): measure of households at constraint

▶ git(a)da: measure of households in [a, a+ da)

▶ Base measure important so that law of motion in density well-posed at constraint

▶ Derivatives become ‘weak’, not ‘classic’, to be compatible with base measure and constraint

▶ In practice can largely ignore this subtlety for numerical discretization
6 / 29



Firms, unions, government and the monetary authority

• Rest of model is exactly as seen so far

• Firms produce under flexible prices Yt = ZtNt so real wages are wt = Wt/Pt = Zt

• Monetary policy: it = r ss + ϕπt + εt

• Fiscal policy sets taxes Tt , spending Gt and debt to satisfy BC: dBt

dt = rtBt + Gt − Tt

• Unions set nominal wages, leading to wage Phillips curve:

ρπW
t = κ1u

′(Ct)Xt + κ2v
′(Nt)Nt + Et

[
dπW

t

dt

]
▶ κ1 = (1− ε)(1− θ)/ψ, κ2 = ε/ψ, πW

t = dWt/dt
Wt

▶ ε: ES in labor aggregation across unions; ϕ: shifter of quadratic union wage adjustment costs

• Asset market clearing:
∑

i

´
agit(a)dν(a) = Bt

7 / 29



Steady-state



Zero-inflation steady-state

• HJB:

ρV ss
i (a) = max

c≥0
u(c)− v(nssi (a)) +

(
r ssa+ X ssy1−θ

i − c
) ∂V ss

i (a)

∂a
+
∑
j

λij(V
ss
j (a)− V ss

i (a))︸ ︷︷ ︸
≡L(a,c)[V ss ]

∂V ss
i (a)

∂a
≥ u′

(
r ssa+ X ssy1−θ

i

)
• KFE:

0 = − ∂

∂a

(
S ss
i (a)g ss

i (a)
)
+
∑
k

g ss
k (a)λki − g ss

i (a)
∑
j

λij ≡ L∗
i (a, c

ss
i (a))[g ss ]

• Market clearing: Bss =
∑

i

´
ag ss

i (a)dν(a), together with fiscal equations

8 / 29



Sequence-space Jacobians



Steady-state and perturbations

• We start from a deterministic steady-state with time-invariant

▶ Value function V ss
i (a) and consumption function c ssi (a)

▶ Distribution g ss
i (a)

▶ Transition operator Li (a) ≡ Lss
i (a, c

ss
i (a)): corresponds to transition matrix in discrete time

• As with all perturbation methods we consider the limit when shocks are small

• Denote deviations from steady-state (ss) with hats

9 / 29



Policy functions



Individual policy functions
• Work with marginal utility of consumption ωit(a) = u′(cit(a)) =

∂Vit(a)
∂a

▶ Could also work directly with value (code uses value)

• Posit to first order

ω̂it(a) = ωit(a)− ωss
i (a) = Et

ˆ ∞

0

e−ρs
{
φr

is(a)r̂t+s +φX
is (a)X̂t+s

}
ds (⋆)

• φr , φX : how marginal utility responds to a future sequence of interest rates, income and hours

▶ No effect of N̂ because union-decided hours worked are uniform and labor disutility is additive

▶ Drops out of the Euler equation / HJB for u′(c), but easy to add back in if change model assumptions

• In discrete time numerically differentiate nonlinear Euler equation

• In continuous time instead substitute (⋆) into HJB and identify coefficients

▶ HJB and (⋆) must hold for all sequences Et r̂r+s ,EtX̂t+s

▶ Imposes restrictions on φr , φX

▶ Allows to do more analytically and ease computational burden

10 / 29



Individual policy functions, continued

• Obtain PDEs for φr ,φX

φr
i0(a)︸ ︷︷ ︸

initial condition

=
∂

∂a

(
a u′(css

i (a))
)

︸ ︷︷ ︸
marginal value of

disposable income gain
from price change

,
∂φr

it(a)
∂t

=

(
r ss −

∂css
i (a)
∂a

)
︸ ︷︷ ︸

substitution effect

φr
it(a)+ Li (a)[φr

t ]︸ ︷︷ ︸
backward time propagation

through expectations

︷ ︸︸ ︷
φX

i0(a) =

︷ ︸︸ ︷
∂

∂a

(
y1−θ u′(css

i (a))
)
,

∂φX
it (a)
∂t

=

︷ ︸︸ ︷(
r ss −

∂css
i (a)
∂a

)
φX

it (a)+
︷ ︸︸ ︷
Li (a)[φX

it ]

▶ Without risk and under CRRA: c0(a) =
(
r ss + σ(ρ − r ss)

) (
a+
´∞
0

e−r ss tyt
)

• Similar to standard HJBs

▶ No discounting because already accounted for in (⋆)

▶ Opposite sign of time derivative: changed direction of time when defining φ

▶ Terminal condition at t becomes initial condition at 0

11 / 29



Individual policy functions with binding constraints

• Constraint occasionally binds =⇒ add boundary condition

• If constraint binds at (a, yi ) in steady-state:

φr
it(a) = u′′(css

i (a))a δ0(t) φX
it (a) = u′′(css

i (a))y1−θ
i δ0(t)

where δ0(t) denotes a Dirac mass function: at constraint only react to current changes in prices

• After solving for φr , φX , obtain consumption from FOC:

ĉit(a) =
ω̂it(a)

u′′(cssi (a))
=

1

u′′(cssi (a))
Et

ˆ ∞

0

e−ρs
{
φr

is(a)r̂t+s +φX
is (a)X̂t+s

}
ds

12 / 29



Taking stock

• Have derived simple linear PDEs

▶ Counterpart to Auclert et al. (2021) but here do not need to numerically differentiate

• Fully determine how individual policy functions respond to price changes

• Solution φs can be calculated with a single linear time iteration

• Explicitly shaped by steady-state objects

▶ Disposable income effect: φ0

▶ Substitution effect: r ss − ∂ac
ss

▶ Expectations: L
▶ Borrowing constraint: φ(a)

• Rest of construction of SSJ will mirror Auclert et al. (2021)

13 / 29



Distribution



Law of motion of the distribution given savings

• Now combine policy functions w/ evolution of distribution to construct market clearing conditions

• For small changes in savings rates:

d ĝt

dt
= L∗[ĝt ]︸ ︷︷ ︸

PE evolution
at steady-state decisions

− ∂

∂a

(
g ss Ŝt

)
︸ ︷︷ ︸
GE evolution
of savings rate

• Solve for the evolution of distribution {ĝt}t≥0

ĝt = T∗
t [ĝ0]−

ˆ t

0

T∗
t−τ

[
∂

∂a

(
g ss Ŝτ

)]
dτ

where T ∗
t is the continuous-time analogue of the transition matrix (semigroup) and satisfies

T ∗
0 = identity operator

∂T ∗
t

∂t
= L∗[T ∗

t ]

14 / 29



Law of motion of the distribution

• Substitute in solution for policy function into savings

ĝt = T∗
t [ĝ0] +

ˆ ∞

0

{ˆ min{t,τ}

0

(
T∗

t−s [D
r
τ−s ]r̂τ + T∗

t−s [D
X
τ−s ]X̂τ

)
ds

}
dτ

• Dr
τ−s ,DX

τ−s : time-0 distribution changes to ‘fake news’

▶ Time-s announcement of time-τ price change, retracted at s + ds

▶ Add up to min{t, τ} since distribution evolution is backward-looking

• For interest rate

Dr
is(a) = −

∂

∂a

(
g ss

i (a)

(
a δ0(s)︸ ︷︷ ︸
direct effect
when shock
hits at 0

−
e−ρsφr

is(a)
u′′(css)︸ ︷︷ ︸

cons. change

))

• Similar for aggregate income X

• Once more get analytic expression rather than numerical derivative

15 / 29



Market clearing



Market clearing

• To clear markets use: B̂t =
∑

i

´
aĝit(a)dν(a)

• For any function Ei (a), denote the expectation of E under gt by: E∗gt ≡
∑

i

´
Ei (a)git(a)dν(a)

• Could compute T ∗
t and solve for full path of distribution ĝit

• As in discrete time would not be computationally efficient

▶ Solving N N × T -dimensional PDEs if T time & N asset/income gridpoints

• Instead use distribution solution to construct market clearing conditions first

• Then recognize that need only to compute lower-dimensional objects to solve for equilibrium

▶ Expectation function

▶ Fake news operator

16 / 29



Fake news matrix and Jacobians

• Integrate solution for distribution against E∗:

E∗ĝt = E∗
t [ĝ0] +

ˆ ∞

0

{ˆ min{t,τ}

0

(
E∗

t−sD
r
τ−s r̂τ + E∗

t−sD
X
τ−sX̂τ

)
ds

}
dτ

where the expectation function E∗T∗
t = (TtE)∗ ≡ E∗

t satisfies simple PDE:

E0 = E ∂Et
∂t

= L[Et ]

▶ Compute as a single PDE given E
▶ One expectation function per market clearing condition

• Define the fake news operator and the Jacobians similarly to discrete time:

Fp
t−s,τ−s = E∗

t−sD
p
τ−s J p

t,τ =

ˆ min{t,τ}

0

Fp
t−s,τ−sds for p = r ,X

17 / 29



Equilibrium conditions
• Asset market clearing becomes

B̂t = E∗
t ĝ0 +

∑
p=r ,X

ˆ ∞

0

J p
t,s p̂sds

• Construct Jacobians for rest of economy

▶ Here just simple scalar relationships

▶ Combine with asset market clearing to link B̂t to prices

• In operator and stacked notation p̂ = [r̂ , X̂ , N̂], Ẑ = [Ẑ , ε̂]

J p̂ = Ẑ + E∗ĝ0︸ ︷︷ ︸
exog. shocks and
initial conditions

▶ J is the sequence-space Jacobian

• Need to solve a linear system of size 3T × 3T if discretize into T time periods
18 / 29



Computing the sequence-space Jacobian in practice

• Just as in discrete time, compute the SSJ through simple recursions:

J p
t,0− = 0 J p

0−,s = 0
dJ p

t+s,τ+s

ds
= Fp

t+s,τ+s

▶ Dirac mass point at in D implies that J p
t,0 ̸= 0

▶ Similar recursions for other Jacobians

• Once discretize into T time periods and N gridpoints requires solving:

1. 2 N × T linear PDEs for policy functions

2. 2 N × T linear PDEs for expectation vectors

3. ∼ T 2 inner products for fake news operators

4. ∼ 2T scalar ODEs for Jacobians

5. 1 3T × 3T linear system inversion

19 / 29



Taking stock

• Overall computational complexity equivalent to discrete time

• Main advantage: obtain interpretable linear PDEs for policy functions instead of numerical diff.

▶ Can exploit for additional speed gains

• Rest of computation similar to discrete time

20 / 29



Discretization and computation



Overview: steady-state

• Overall structure as in discrete time, but some details differ

• Guess a value for aggregates r ,X ,N

• Given this value for aggregates, solve the HJB equation

▶ Typically use a finite difference method rather than EGM, though can also use EGM

▶ Achdou et al. (2022): in-depth econ-friendly description of algorithm

• Given the consumption function, obtain savings and solve the KF equation

▶ Similar finite difference method

• Given solution to KF equation, update value for r ,X ,N

• Iterate on r ,X ,N until convergence using Newton or favorite solver

• Go to Ben Moll’s website for great codes and tutorials

21 / 29

https://benjaminmoll.com/codes/


Solving the steady-state HJB equation (1/2)

• Discretize state space (ak , yi ) and Vik = V (ak , yi ), set time step ∆ > 0

• Given (r ,X ,N) solve HJB by starting from initial guess V 0 and iterating on

ρV n+1
ik = u((u′)−1((∂aV )nik))− v(N) +

[
rak + Xy1−θ

i − (u′)−1(∂aV
n
ik)
]
(∂aV )n+1

ik

+
∑
j

λij(V
n+1
jk − V n+1

ik ) +
V n
ij − V n+1

ij

∆

▶ n indices iterations
▶ Derivatives are approximated with “upwinding”

⋆ Forward vs. backward approx. depends on sign of drift, e.g.

(∂aV )n+1
ij =


V n+1
i,k+1

−V n+1
ik

ak+1−ak
if

[
rak + Xy1−θ

j − (u′)−1(∂aV n
ik )

]
> 0

V n+1
ik

−V n+1
i,k−1

ak−ak−1
if

[
rak + Xy1−θ

i − (u′)−1(∂aV n
ik )

]
< 0

⋆ Intuitive: approximate derivatives in the direction of drift
⋆ Important: numerical stability of the scheme

22 / 29



Solving the steady-state HJB equation (2/2)

• Stack (i , k) into a single dimension and re-write HJB equation in matrix form

VVV n+1 =

[(
ρ+

1

∆

)
III −LLL(VVV n)

]−1 [
uuu(VVV n)− v(N)v(N)v(N) +

1

∆
VVV n

]
▶ uij(VVV ) = u((u′)−1((∂aVVV )ij))

▶ LLL(VVV ) is a diagonal-by-block matrix

▶ Has drift terms above/below diagonal depending on upwinding scheme

• Enforce boundary conditions

V n+1
i1 s.t (∂aV )n+1

i1 = max
{
(∂aV )n+1

i1 , u′(ra1 + Xy1−θ
i )

}
, ∀i

23 / 29



Interpretation

• Start from “terminal” condition V 0

• Iterate backwards in time (n) until value V remains unchanged

• Use the time-dependent HJB equation with dt ≡ ∆ even for stationary case

▶ n increases means time t decreases

▶ Approximation of time derivative is

∂tV ≡
V n

ij − V n+1
ij

∆

• Similar to policy function iteration

24 / 29



Solving the steady-state KF equation

• Similar to HJB equation

• Formal duality between operators in HJB and KF makes it simple

0 = LLL(VVV )∗ggg

where now ∗ denotes the matrix transpose

• Cannot simply invert discretized KF because KF operator is not full rank

• Replace one row/column of LLL by identity matrix row/column → L̃LL
• Invert (now full rank) linear system

ggg =
[
L̃LL

∗]−1

111

where
▶ 111 is zero except at the replaced column of A

▶ Normalize g = g/sum(g)

25 / 29



Solving for the Jacobians
• Given steady-state solving for φr , φX is super simple

• Just one time iteration using analytical formula:

φφφr
0 = DaDaDa ·

(
aaa ◦ u′(css)u′(css)u′(css)

)
, φφφr

t+dt = ΦΦΦφφφr
t ΦΦΦ = III + (r ss −DaDaDaccc

ss)III +LLL

φr
0,i1 = u′′(cssi1 )ai1 if cons. φr

t+dt,i1 = 0 if cons.

where
▶ ◦ is the element-wise product and DaDaDa encodes the asset derivative as in steady-state

▶ We apply the boundary condition iff (yi , a) is constrained in steady-state

▶ Similarly for φX

• Then construct DDDr ,DDDX using analytical formula

DDDr
s = −DaDaDa ·

(
ggg ss ◦

(
aaa 1{s = 0}+ e−ρs

u′′(css)u′′(css)u′′(css)
◦φφφr

s

))
where similarly for DDDX

• Then construct Jacobians exactly as in discrete time given DDDr ,DDDX

26 / 29



Example



Consumption Jacobian and IRFs

(a) Cons. Jacobian to income

0 50 100 150 200 250 300
Year

0.00

0.02

0.04

0.06

0.08

p.
p.

 d
ev

ia
tio

n 
fro

m
 S

S

Continuous (surprise)
Continuous (anticipated)
Discrete

(b) Output to gov. spending

0 5 10 15 20 25 30
Year

0.0

0.2

0.4

0.6

0.8

1.0

p.
p.

 d
ev

ia
tio

n 
fro

m
 S

S

Continuous (surprise)
Continuous (anticipated)
Discrete

(c) Output to monetary shock

0 5 10 15 20 25 30
Year

2.0

1.5

1.0

0.5

0.0

p.
p.

 d
ev

ia
tio

n 
fro

m
 S

S

Continuous (surprise)
Continuous (anticipated)
Discrete

Note: Solid blue: continuous time with a discretization that imposes information aggregation as in discrete time. Dotted
blue: continuous time with a discretization that does not impose information aggregation: changes in income and prices
are a surprise only in instant t = 0 but not at any t ∈ (0, 1] (see paper for details). Dashed orange: discrete time. 50
income states and 5,000 asset gridpoints.

27 / 29



HANK IRF computation times

(a) Discrete time

0 50 100 150 200 250
Gridpoints (thousands)

0

2

4

6

8

10

12

Cu
m

ul
at

iv
e 

Ru
nt

im
e 

(s
ec

on
ds

)

(b) Continuous time

0 50 100 150 200 250
Gridpoints (thousands)

0

2

4

6

8

10

12

Cu
m

ul
at

iv
e 

Ru
nt

im
e 

(s
ec

on
ds

)

Policy functions
Expectation vector
Fake news matrix
Jacobian
Inversion

28 / 29



Conclusion



Conclusion

• Provide a sequence-space Jacobian routine for continuous-time models

• Obtain additional analytical traction, leading to speed gains

• Demonstrate how to use it to solve workhorse heterogeneous agent models

• Python and Matlab routines available at

▶ https://github.com/ShlokG/CT-SSJ/

▶ or https://sites.google.com/site/adrienbilal/

29 / 29

https://github.com/ShlokG/CT-SSJ/
https://sites.google.com/site/adrienbilal/


Thank You!



Appendix



HA steady-state computation times

Back to Jacobian
30 / 29


	Introduction
	Setup
	Steady-state
	Sequence-space Jacobians
	Discretization and computation
	Example
	Appendix

