HANK in Continuous Time

Adrien Bilal

Stanford University

June 2025

Introduction

e So far in workshop saw how to handle workhorse HANK model in discrete time

» Though paper coining ‘HANK' developed in continuous time! (Kaplan et al. 2018)

e Continuous time has several attractive properties for heterogeneous agent models
» Efficient calculation of steady-state with finite differences (Achdou et al. 2022)
» Seamlessly handles nonconvexities (Kaplan et al. 2018): kinks in interest rates, fixed portfolio costs

» Sometimes can gain more pen-and-paper traction

e What does a sequence-space approach to HANK in continuous time look like?
» Retain fast transitions and low memory requirements?

» Additional benefits in continuous time?

1/29

This lecture

Based on Bilal and Goyal “Some Pleasant Sequence-Space Arithmetic in Continuous Time" (2025)

e Set up standard HANK economy in continuous time
> Individual decision problem: backward PDE

» Law of motion: forward PDE

Develop sequence space Jacobians in continuous time
> Main payoff of continuous time: characterize policy functions analytically w/ backward PDE
> Rest of SSJ construction as in Auclert et al. (2021)

> Approach applies to much more general settings
e Discuss implementation and discretization (time permitting)

® | everage analytical characterization: 3x speed gain

/29

Literature

® Perturbation methods for heterogeneous agent macro in discrete time: Reiter (2008), Ahn et al.
(2018), Auclert et al. (2021), Bhandari et al. (2024)

» Develop and characterize SSJ in continuous time

® Perturbation methods for heterogeneous macro in continuous time: Bilal (2023), Glawion (2023)
> Sequence space rather than state space (Bilal 2023)
> Does not rely on discretizing state/time first & derive PDE for policy functions (Glawion 2023)

> If interested in second-order perturbations: Bilal (2023)

3/29

Setup

Household decision problem

e Consider continuous-time version of setup seen so far

® Budget constraint: da; = (rra; + Xtytl_e — ¢;)dt, where
> a; denotes assets, ¢; consumption,

» post-tax income satisfies X;yi % = e(weyen:)t 7, fyjlfedj =1, X%=Y—-T:
® Borrowing constraint: a; > a

* For exposition use income process with discrete states {y, ..., y,} and transition rates A;

* Hamilton-Jacobi-Bellman (HJB) equation: continuation value | Chennuation watuc
from changes in prices re, X:
own assets and prod.

—_— d\/,-t(a)
pVie(a) = maxu(c)—v(ng(a))+ Li(a,c)[V:] +E|———

>0 dt

_ oVi(a
Li(a,0)[V] = (ra+Xwyi—c) ai) +>Xi(V(a) - Vi(a))
J

savings rate

) g continuation value from
continuation value changes in productivity
from changes in assets

/29

Occasionally binding borrowing constraints

® Handling borrowing constraints is very tractable in continuous time
> In continuous time asyq: = a: + Sit(a:¢)dt is close to a¢
> So only households exactly at a; = a behave behave as constrained

> Different from discrete time where households in some interval [a, §) behave as constrained

e Tractably incorporate borrowing constraint as restriction on value function

» Turns out that consumption FOC always holds with equality, even at a:

u'(cir(a)) = 8\2’;3(3), foralla> a

> Because value function adjusts so that assets do not cross a: c¢i(a) < rra+ Xty,-lfe, that is:

OVi(a _
% > U'(fté-i-Xty,-l 9)

/29

Evolution of distribution
® Law of motion (Kolmogorov Forward) equation:

dgsia):_%(s 2gn(a)) + ngt e — gila) 3 Ny = Li(a, cila) e

savings

inflow from outflow to
other prod. states other prod. states

> Si(a) = rra+ y; — ci(a): savings rate; ci(a): consumption
» L7(a)[] denotes the adjoint (transpose) of functional operator L;(a)[]
» As such holds for a > a

® To extend this formula to a = a need to introduce a base measure dv(a)
> Let gi(a) be the density of households with respect to base measure dv(a) = d,(a) ® da
> 0,(a): Dirac mass point. gi(a): measure of households at constraint
> gi(a)da: measure of households in [a, a + da)
> Base measure important so that law of motion in density well-posed at constraint
» Derivatives become ‘weak’, not ‘classic’, to be compatible with base measure and constraint

> In practice can largely ignore this subtlety for numerical discretization

/29

Firms, unions, government and the monetary authority

® Rest of model is exactly as seen so far
e Firms produce under flexible prices Y; = Z;N; so real wages are w; = W, /P; = Z;

® Monetary policy: iy = r** + ¢ms + ¢

Fiscal policy sets taxes T;, spending G; and debt to satisfy BC: % =nB; + G; —

¢ Unions set nominal wages, leading to wage Phillips curve:

w o_ / ’ d7T1.W
Py = KU (Ct)Xt + KoV (Nt)Nt +]Et

dt
= (L= e)(1— 0)/t, k2 = e/th, ml¥ = Wa/at

» e: ES in labor aggregation across unions; ¢: shifter of quadratic union wage adjustment costs

e Asset market clearing: Y, [agi:(a)dv(a) =

7/29

Steady-state

Zero-inflation steady-state

e HIB:
\/SS
/)V,'ss()_ max U(C) _ V(()) + (rssa+Xssy’1 0 C +Z)\U VSS())
=L(a,c)[V=]
(9‘/55() ss ss . 1—0
>u
5 (r a+ X%y)
e KFE:
0 ss = * ss SS
0= ,a(s’) Zg A — & (a)zx\;j = L] (a, ¢ (a))[g™]
J

* Market clearing: B* =Y. [ag(a)dv(a), together with fiscal equations

Sequence-space Jacobians

Steady-state and perturbations

e We start from a deterministic steady-state with time-invariant
> Value function V;*(a) and consumption function ¢*(a)
» Distribution gi*(a)

» Transition operator L;(a) = L{*(a, ¢i*(a)): corresponds to transition matrix in discrete time
® As with all perturbation methods we consider the limit when shocks are small

e Denote deviations from steady-state (ss) with hats

9/29

Policy functions

Individual policy functions

® Work with marginal utility of consumption w;(a) = u’(cit(a)) = %‘a(a)
» Could also work directly with value (code uses value)
e Posit to first order
o0 ~
ou(a) = wia) = wP(a) = Be | e {iph(@)ieee + 0 (a) Rers s (+)
0

©", X how marginal utility responds to a future sequence of interest rates, income and hours
» No effect of N because union-decided hours worked are uniform and labor disutility is additive

» Drops out of the Euler equation / HIB for u’(c), but easy to add back in if change model assumptions
® In discrete time numerically differentiate nonlinear Euler equation

® In continuous time instead substitute (*) into HJB and identify coefficients
» HJB and (*) must hold for all sequences IEtF,+S,IEt)’C+S
» Imposes restrictions on ", ¥
> Allows to do more analytically and ease computational burden

10/29

Individual policy functions, continued
e Obtain PDEs for ¢, %

r _ a ’ SS 8¢:t(a) _ SS 8Clss(a)

viola) = a(a u'(c; (a))>, “or <r T 9a

marginal value of
initial condition disposable income gain
from price change

)o@+ L)l
——

backward time propagation

substitution effect through expectations

— X o —
@ = (@), B (22T s L)l

> Without risk and under CRRA: cy(a) = (r* + o (p — r*)) (a + [, e_'sstyt)

e Similar to standard HJBs
> No discounting because already accounted for in (%)
» Opposite sign of time derivative: changed direction of time when defining ¢

» Terminal condition at t becomes initial condition at 0

11/29

Individual policy functions with binding constraints

e Constraint occasionally binds => add boundary condition

e If constraint binds at (a, y;) in steady-state:

®h(a) = u”(c(a))a do(t) X (a) = u”(c*(a))y; ~° do(t)

where dg(t) denotes a Dirac mass function: at constraint only react to current changes in prices

e After solving for ", X, obtain consumption from FOC:

~ _ ait(a) _ 1 > —ps r s Y
() = u'(c*(a)) U”(C,-ss(a))]Et/o ¢ {SD"S(a)r”S +90'§(a)xt+s}ds

12/29

Taking stock

® Have derived simple linear PDEs

» Counterpart to Auclert et al. (2021) but here do not need to numerically differentiate

Fully determine how individual policy functions respond to price changes

Solution s can be calculated with a single linear time iteration

Explicitly shaped by steady-state objects
> Disposable income effect: g
» Substitution effect: r** — 9,c*
» Expectations: £

> Borrowing constraint: ((a)

Rest of construction of SSJ will mirror Auclert et al. (2021)

13/29

Distribution

Law of motion of the distribution given savings

® Now combine policy functions w/ evolution of distribution to construct market clearing conditions

® For small changes in savings rates:

dg: . 0 A
e S Oy
dt —— Oa
PE evolution .
at steady-state decisions GE evolution
of savings rate

® Solve for the evolution of distribution {;}+>0

t
~ *[A * a A
8t = Tt [gO] _/O Tt—T |:aa (gsssq-):| dr
where T} is the continuous-time analogue of the transition matrix (semigroup) and satisfies

oT;
ot

T§ = identity operator = L*[T]

14 /29

Law of motion of the distribution

e Substitute in solution for policy function into savings

g =T [go]+/m {/Omin{m} (T:‘_S[D JE+ T DX])‘(,)ds} dr

DI _ s,’D_,’f : time-0 distribution changes to ‘fake news'’

» Time-s announcement of time-7 price change, retracted at s + ds

> Add up to min{t, 7} since distribution evolution is backward-looking

————

direct effect

® For interest rate

WRE‘:{" S¥00Ck cons. change
. . . Its a
Similar for aggregate income X

® Once more get analytic expression rather than numerical derivative

15/29

Market clearing

Market clearing

e To clear markets use: B; = 3", [agi(a)dv(a)

For any function &;(a), denote the expectation of £ under g; by: E*g: = . [€i(a)gie(a)dv(a)

Could compute T/ and solve for full path of distribution g;

e As in discrete time would not be computationally efficient

> Solving N N x T-dimensional PDEs if T time & N asset/income gridpoints

Instead use distribution solution to construct market clearing conditions first

® Then recognize that need only to compute lower-dimensional objects to solve for equilibrium
» Expectation function

» Fake news operator

16 /29

Fake news matrix and Jacobians

® Integrate solution for distribution against £*:

S min{t,7} .
£*8 = EX[&0] + / { / G +€f_st_sXT>ds} dr
0 0

where the expectation function £* T} = (T,£)* = £ satisfies simple PDE:

OE:
Eo=E 5 = Ll

» Compute as a single PDE given £

» One expectation function per market clearing condition

e Define the fake news operator and the Jacobians similarly to discrete time:

min{t,7}
ffs*r s_e* TS jt‘j-r:/o]:fsq'ss forp=r, X

17 /29

Equilibrium conditions
® Asset market clearing becomes
B.=Elgo+ Z/ TP peds
p=r,X 0

e Construct Jacobians for rest of economy
» Here just simple scalar relationships

» Combine with asset market clearing to link B; to prices

A

* In operator and stacked notation p = [f, X, N], Z = [Z,]
Jp = z +E* oy
—_——

exog. shocks and

initial conditions

> J is the sequence-space Jacobian

® Need to solve a linear system of size 3T x 3T if discretize into T time periods

18/29

Computing the sequence-space Jacobian in practice

e Just as in discrete time, compute the SSJ through simple recursions:

dJf
P _ P _ t+s,7+s /—_-p
jt,O— =0 ‘70—,5 =0 ds T Y tds,T+s

> Dirac mass point at in D implies that J7, # 0

» Similar recursions for other Jacobians
® Once discretize into T time periods and N gridpoints requires solving:
1. 2 N x T linear PDEs for policy functions
2. 2 N x T linear PDEs for expectation vectors
3. ~ T2 inner products for fake news operators
4. ~ 2T scalar ODEs for Jacobians

5. 13T x 3T linear system inversion

19/29

Taking stock

e Qverall computational complexity equivalent to discrete time

® Main advantage: obtain interpretable linear PDEs for policy functions instead of numerical diff.

» Can exploit for additional speed gains

® Rest of computation similar to discrete time

20/29

Discretization and computation

Overview: steady-state

e Overall structure as in discrete time, but some details differ
® Guess a value for aggregates r, X, N

e Given this value for aggregates, solve the HJB equation
» Typically use a finite difference method rather than EGM, though can also use EGM
» Achdou et al. (2022): in-depth econ-friendly description of algorithm

® Given the consumption function, obtain savings and solve the KF equation

> Similar finite difference method
® Given solution to KF equation, update value for r, X, N
® |terate on r, X, N until convergence using Newton or favorite solver

® Go to Ben Moll’s website for great codes and tutorials

21/29

https://benjaminmoll.com/codes/

Solving the steady-state HJB equation (1/2)

® Discretize state space (ax,y;) and Vi = V(ax, y;), set time step A >0

* Given (r, X, N) solve HJB by starting from initial guess V° and iterating on

PVt = u((W) (82 V)5)) — VIN) + [rax + Xy} =0 — (1) (0. Vi)][(0. V)5
VRV
n+1 n+1 I i
+ Z/\U(\/jk+ - Vit)JFJTJ
J

> n indices iterations
> Derivatives are approximated with “upwinding”
* Forward vs. backward approx. depends on sign of drift, e.g.

Vil _yntl

K [ra 4+ Xy 0 — (0)TH(0a V)] > 0

@V = A
S i [rac+ Xy — (1) (0. VR)] < 0

* Intuitive: approximate derivatives in the direction of drift
* Important: numerical stability of the scheme

22/29

Solving the steady-state HJB equation (2/2)

e Stack (i, k) into a single dimension and re-write HJB equation in matrix form
1 ! 1
vl — Kp + A) I — E(V")} [u(V") —v(N) + ZV”

> ug(V) = u((u) 7 ((9:V)))
» L(V) is a diagonal-by-block matrix

> Has drift terms above/below diagonal depending on upwinding scheme

¢ Enforce boundary conditions

Vittst @V)E = max {0V, (ra+ Xy %)} L Vi

23/29

Interpretation

Start from “terminal” condition V°

Iterate backwards in time (n) until value V' remains unchanged

Use the time-dependent HJB equation with dt = A even for stationary case
> n increases means time t decreases
» Approximation of time derivative is

n n+1
Vi =V

atVE A

e Similar to policy function iteration

24/29

Solving the steady-state KF equation

e Similar to HJB equation

Formal duality between operators in HJB and KF makes it simple
0 = L(V)e

where now * denotes the matrix transpose

e Cannot simply invert discretized KF because KF operator is not full rank

Replace one row/column of £ by identity matrix row/column — L

Invert (now full rank) linear system
11
=[]
where

» 1 is zero except at the replaced column of A

> Normalize g = g/sum(g)

25/29

Solving for the Jacobians
* Given steady-state solving for ", X is super simple
® Just one time iteration using analytical formula:
wo=D; - (a o u'(css)), Orige = Sl ® =1+ (r*—Dyc*)l + L
©o.n = u"(cF)ap if cons. ©figrin = 0 if cons.

where
> o is the element-wise product and D, encodes the asset derivative as in steady-state

» We apply the boundary condition iff (y;, a) is constrained in steady-state
» Similarly for o*

* Then construct D", DX using analytical formula

D;:Da.<g o(a1{s_o}+) ss))>

where similarly for DX

* Then construct Jacobians exactly as in discrete time given D", DX

26/29

Example

Consumption Jacobian and IRFs

0.08

o o
° °
2 a\

p.p. deviation from SS
S
S

0.00

Note

are a surprise only in instant t = 0 but not at any t € (0, 1] (see paper for details). Dashed orange: discrete time. 50
income states and 5,000 asset gridpoints.

(a) Cons. Jacobian to income

H —— Continuous (surprise)
Continuous (anticipated)
Discrete

150 200

Year

100

p.p. deviation from SS

(b) Output to gov. spending

1.0

0.2

—— Continuous (surprise)
Continuous (anticipated)
Discrete

5 10 15 20 25 30
Year

(c) Output to monetary shock

—— Continuous (surprise)
Continuous (anticipated)
Discrete

0 5 10 15 20 25
Year

30

: Solid blue: continuous time with a discretization that imposes information aggregation as in discrete time. Dotted
blue: continuous time with a discretization that does not impose information aggregation: changes in income and prices

27/29

HANK IRF computation times

Cumulative Runtime (seconds)

ot
S

(a) Discrete time

50

100 150
Gridpoints (thousands)

Cumulative Runtime (seconds)

S

©

o

IS

~

(b) Continuous time

Policy functions
Expectation vector
Fake news matrix
Jacobian

Inversion

100 150
Gridpoints (thousands)

28/29

Conclusion

Conclusion

Provide a sequence-space Jacobian routine for continuous-time models

Obtain additional analytical traction, leading to speed gains

e Demonstrate how to use it to solve workhorse heterogeneous agent models

Python and Matlab routines available at
> https://github.com/ShlokG/CT-SSJ/

> or https://sites.google.com/site/adrienbilal/

29/29

https://github.com/ShlokG/CT-SSJ/
https://sites.google.com/site/adrienbilal/

Thank You!

Appendix

HA steady-state computation times

» Back to Jacobian

Runtime (seconds)

= = Continuous, EGM
801 -..- Continuous, Implicit
-« Discrete

60 -

40 A

20 A

—— Continuous, Minimum .~
’/

0 50 100 150
Gridpoints (thousands)

200

250

30/29

	Introduction
	Setup
	Steady-state
	Sequence-space Jacobians
	Discretization and computation
	Example
	Appendix

