Introduction to the Sequence Space and Jacobians

Matthew Rognlie

NBER Heterogeneous-Agent Macro Workshop, 2025

Calculating sequence-space Jacobians

One sequence-space Jacobian: intertemporal MPCs

Here we're plotting a few columns of the sequence-space Jacobian M

How do we calculate sequence-space Jacobians?

- * Sequence-space Jacobians are awesome if we have them
- * But how do we get them the first place?
- * Each column is an impulse response to perturbation only at s...
- * Do we need to redo this process T times, once for each s, at cost $O(NT^2)$?

$$\mu_0 = \mu_{ss}$$

We can do better

- * The "direct" or "brute-force" method is costly:
 - * if $N \gg T$, then $O(NT^2)$ work to get Jacobians swamps $O(T^3)$ cost of matrix operations
 - * (still not totally useless, especially if we can reuse them)
- * Fortunately, there's a better way: the "fake news algorithm"
 - * Need (roughly) single backward and forward pass, not one for each s
 - * Reduces bottleneck steps to O(NT)
 - * Reference: SSJ paper (Auclert, Bardóczy, Rognlie, Straub, Econometrica 2021)

General setup (similar to SSJ paper notation)

- * Let superscript s denote infinitesimal shock $dZ_s = dx$ at date s
 - * Income at all other dates remains in steady state
- * Can iterate backward to get policy functions \mathbf{c}_t^s and transition matrix over discretized states $\mathbf{\Lambda}_t^s$ at each date, which we represent as flattened vectors
- * Distribution (over discretized states) and aggregate consumption given by

$$\mathbf{D}_{t+1}^s = (\mathbf{\Lambda}_t^s)' \mathbf{D}_t^s$$

$$C_t^s = (\mathbf{c}_t^s)' \mathbf{D}_t^s$$

* Then calculate intertemporal MPCs $M_{ts} = \partial C_t / \partial Z_s$ as dC_t^s / dx

Insight: only need to iterate backward once!

- * Iterate backward separately to recalculate \mathbf{c}_t^s and $\mathbf{\Lambda}_t^s$ for each s? No!
- * Why? Because only distance to the shock matters for policy function:

$$\mathbf{c}_t^s = \mathbf{c}_{t+h}^{s+h}$$
 for any h

* So, just consider one shock at maximal horizon s = T - 1, then write (same for Λ)

$$\mathbf{c}_{t}^{S} = \begin{cases} \mathbf{c}_{SS} & s < t \\ \mathbf{c}_{T-1}^{T-1} & s \ge t \end{cases}$$

Very helpful, but still lots of work

- * Backward iteration often costliest, so this is a big help!
- * But still, for each s, need to iterate forward on distribution
- * Economized on top steps but not bottom:

$$D_0 = D_{ss}$$

What's going on?

* We care about aggregate $C_t^s = (\mathbf{c}_t^s)'\mathbf{D}_t^s$

- [or, more specifically, $M_{t,s} \equiv dC_t^s/dx$]
- * We have $\mathbf{c}_t^s = \mathbf{c}_{t+h}^{s+h}$, but that's not true for \mathbf{D}_t^s : generally $\mathbf{D}_t^s \neq \mathbf{D}_{t+h}^{s+h}$
- * Theorem: to first order,

$$d\mathbf{D}_{t}^{s} - d\mathbf{D}_{t-1}^{s-1} = (\Lambda'_{ss})^{t-1} d\mathbf{D}_{1}^{s}$$

- * Why? If shock happens at s instead of s-1, one more period to anticipate it
 - * \rightarrow affects date 0 policy \rightarrow affects distribution date-1 distribution $d\mathbf{D}_1^s$
 - * \rightarrow carries over to date t distribution via t-1 applications of $(\Lambda'_{SS})^{t-1}$

Effect on aggregates

- * We have $d\mathbf{D}_{t}^{s} d\mathbf{D}_{t-1}^{s-1} = (\Lambda'_{ss})^{t-1} d\mathbf{D}_{1}^{s}$
- * Effect on $dC_t^s dC_{t-1}^{s-1} = \mathbf{c}'_{ss}(d\mathbf{D}_t^s d\mathbf{D}_{t-1}^{s-1})$ is therefore:

$$\mathbf{c}'_{ss}(\Lambda'_{ss})^{t-1}d\mathbf{D}_1^s \qquad (\equiv F_{t,s} \cdot dx)$$

- * The matrix $F_{t,s}$ is closely related to Jacobian $M_{t,s}$ via $F_{t,s} = M_{t,s} M_{t-1,s-1}$
- * Can reconstruct $M_{t,s}$ from diagonals $F_{t,s}$ (defining $F_{t,s} \equiv M_{t,s}$ for t or s=0):

$$M_{3,4} = F_{3,4} + F_{2,3} + F_{1,2} + F_{0,1}$$

What is this F ("fake news matrix")?

- * For t, s > 0, we have $F_{t,s} = M_{t,s} M_{t-1,s-1}$
- * Why are $M_{t,s}$ and $M_{t-1,s-1}$ different?
 - * Because former has one extra period of anticipation
 - * $F_{t,s}$ is the effect at t of having thought, at 0, that there would be shock at s

- * One interpretation: "fake news shock"
 - * $F_{.,s}$ is impulse response to shock at s announced at 0, rescinded at 1

Visualizing columns of F

Difference between $M_{t,1}$ and $M_{t-1,0}$...

... is exactly $F_{t,1}$

Where we stand now

- * Reduced finding Jacobian M to "fake news matrix" F
- * Simple formula for $F_{t,s}$ when t > 0:

$$F_{t,s}dx = \mathbf{c}'_{ss}(\Lambda'_{ss})^{t-1}d\mathbf{D}_1^s$$

- * Problem: still seems like a lot of work to apply Λ'_{ss} repeatedly to each $d\mathbf{D}_1^{s}$!
- * Solution: evaluate formula from the left, not the right!
- * Calculate "expectation functions" $\mathcal{E}_t \equiv (\Lambda_{ss})^t \mathbf{c}_{ss}$ only once, then evaluate $\mathcal{E}_t' d\mathbf{D}_1^s$
 - * \mathcal{E}_t is expected c in t periods for a household who follows steady-state policy

Cracked it open, now have four-step algorithm

- * Step 1: iterate backward once from shock $dZ_{T-1} = dx$ to obtain all Λ_t^s , \mathbf{y}_t^s
 - * define $\mathcal{Y}_s dx \equiv (d\mathbf{c}_0^s)' \mathbf{D}_{ss}$ and $\mathcal{D}_s dx \equiv (d\Lambda_0^s)' \mathbf{D}_{ss}$
- * Step 2: repeatedly apply Λ_{ss} to calculate expectation functions $\mathscr{E}_t \equiv (\Lambda_{ss})^t \mathbf{c}_{ss}$
- * Step 3: form fake news matrix, which is $F_{0,s} = \mathcal{Y}_s$ and $F_{t,s} = \mathcal{E}'_{t-1}\mathcal{D}_s$ (t > 0)
- * Step 4: calculate all $M_{t,s}$ by cumulatively summing diagonals of $F_{t,s}$
- * First 2 steps are O(NT), step 3 is $O(NT^2)$ but can be written as giant matrix multiplication (super efficient, never the bottleneck), step 4 is $O(T^2)$

Summary: the "fake news algorithm"

- * Most complex of ideas so far, but now sequence-space Jacobians are practical!
 - * Key step is only O(NT), far better than the $O(N^3)$ of state-space methods
 - * Example was iMPCs M, but same method for any other Jacobian
 - * Various implementation details (for multiple inputs / outputs, numerical vs. automatic differentiation, ...): see SSJ paper and appendix

- * Reducing Jacobians to "fake news matrices" an interesting step in own right
 - * Isolate effects of information, useful for deviations from FIRE

What is a sequence-space solution?

Think about a stochastic economy

- * So far we've done "MIT shocks": one-time shocks starting from steady state, where new path becomes known at t = 0
- * What if shocks keep hitting the economy?
- * Deficit-financed tax cut example: suppose that

$$T_t = T_{ss} + \sum_{s=0}^{\infty} a_s \epsilon_{t-s}$$

where $\epsilon_t \equiv \sigma \bar{\epsilon}_t$, with σ scaling size of shocks, and $\bar{\epsilon}_t$ symmetric around 0 and iid with variance 1, determined at date t

* What are implications for path of Y_t ?

Sequence-space solution

- * Realized output at date t depends on all past realized ϵ_t
- * In a stationary world, can write nonlinear solution (won't formally derive):

$$Y_t \equiv Y(\sigma; \epsilon_t, \epsilon_{t-1}, \ldots)$$

which depends on realized ϵ_t , and also σ because it scales future shocks

* Can then look to first order in σ around $\sigma = 0$:

$$\frac{dY_t}{d\sigma} = \frac{\partial Y}{\partial \sigma} + \frac{\partial Y}{\partial \epsilon} \bar{\epsilon}_t + \frac{\partial Y}{\partial \epsilon_{-1}} \bar{\epsilon}_{t-1} + \dots$$

Simplifying insight

* To first order around $\sigma = 0$:

$$\frac{dY_t}{d\sigma} = \frac{\partial Y}{\partial \sigma} + \frac{\partial Y}{\partial \epsilon} \bar{\epsilon}_t + \frac{\partial Y}{\partial \epsilon_{-1}} \bar{\epsilon}_{t-1} + \dots$$

- * Insight: must have $\frac{\partial Y}{\partial \sigma} = 0!$
 - * Why? Symmetric shock distribution, **doesn't matter** if we scale by σ or $-\sigma$!
- * So to first order, effect of shocks is an MA process:

$$\frac{dY_t}{d\sigma} = \frac{\partial Y}{\partial \epsilon} \bar{\epsilon}_t + \frac{\partial Y}{\partial \epsilon_{-1}} \bar{\epsilon}_{t-1} + \dots$$

Connection to MIT shocks

- * An "MIT shock" is a one-time shock to steady state, with no uncertainty
- * Corresponds to $\epsilon_0 \neq 0$, where $\sigma = 0$ and $\epsilon_t = 0$ for all $t \neq 0$
- * To first order in ϵ_0 , the impulse response to MIT shock is therefore

$$\frac{dY_t^{MIT}}{d\epsilon_0} = \frac{\partial Y}{\partial \epsilon_{-t}}$$

where Y on right is our sequence-space solution

* So we get first-order coefficients in **general sequence-space solution** from impulse to an MIT shock: **MIT shock impulse** = **first-order MA coefficients**

Simulation almost free

- * Solve for impulse response to a small MIT shock
 - * e.g. what we saw in last lecture for fiscal policy, can use SSJs to solve
- * Then, can **simulate** time series to first order in σ ,

[writing $\epsilon_t = \sigma \bar{\epsilon}_t$]

$$dY_t = \frac{\partial Y}{\partial \epsilon} \epsilon_t + \frac{\partial Y}{\partial \epsilon_{-1}} \epsilon_{t-1} + \dots$$

for any path of $\{\epsilon_t\}$, taking off all $\partial Y/\partial \epsilon$ from MIT shock impulse response

- * Only do work to solve MIT shock once, then almost free!
 - * Insight of Boppart, Krusell, Mitman (2018)

Example: start with MIT shock impulse response

Then layer on top of itself to simulate

Analytical second moments

- * Often we simulate to obtain moments of the simulated data, e.g. variances and autocorrelations
- * But Monte Carlo slow and introduces sampling error, better to write solution

$$dY_t = \frac{\partial Y}{\partial \epsilon} \epsilon_t + \frac{\partial Y}{\partial \epsilon_{-1}} \epsilon_{t-1} + \dots$$

and analytically find covariance

$$Cov(dY_t, dY_{t'}) = \sigma^2 \sum_{s=0}^{\infty} \frac{\partial Y}{\partial \epsilon_s} \frac{\partial Y}{\partial \epsilon_{s+t'-t}}$$

* Much faster in practice, can generalize to multiple series, speed up with FFT

Summing up

* To first order:

Impulse response to MIT shock = MA coefficients in stochastic economy

- * Can use to efficiently simulate or get second moments
- * Either is almost free once we have the MIT shock impulse

Advantages of the sequence space and Jacobians

Any shock, any heterogeneity

* In fiscal policy lecture, we could solve

$$d\mathbf{Y} = \mathbf{A}^{-1}d\mathbf{B} + d\mathbf{T}$$

- * Once we've calculated inverse asset Jacobian A^{-1} , we can solve for response to **any time path** of $d\mathbf{B}$ and $d\mathbf{T}$ almost instantly
- * Similar "general equilibrium Jacobian" mapping in more complex cases
- * Suppose we want 100 different types, over and above our heterogeneity
 - * Just take weighted average of the As to get economy-wide A

Some advantages of the sequence space: summary

- 1. Can get response to any shock
- 2. Can easily handle almost any heterogeneity
- 3. Can simulate, get any second moments, use to estimate model [to come!]
- 4. Can implement non-rational expectations [to come!]
- 5. Can get informative decompositions [e.g. dY = dG MdT + MdY]

(These advantages carry over in part to any MIT shock / sequence-space method, but best by far when we're using Jacobians!)