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Calculating sequence-space Jacobians



One sequence-space Jacobian: intertemporal MPCs
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How do we calculate sequence-space Jacobians?
❖ Sequence-space Jacobians are awesome if we have them

❖ But how do we get them the first place?

❖ Each column is an impulse response to perturbation only at …

❖ Do we need to redo this process  times, once for each , at cost ?
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We can do better
❖ The “direct” or “brute-force” method is costly:

❖ if , then  work to get Jacobians swamps  cost of matrix 
operations

❖ (still not totally useless, especially if we can reuse them)

❖ Fortunately, there’s a better way: the “fake news algorithm”

❖ Need (roughly) single backward and forward pass, not one for each 

❖ Reduces bottleneck steps to 

❖ Reference: SSJ paper (Auclert, Bardóczy, Rognlie, Straub, Econometrica 2021)
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General setup (similar to SSJ paper notation)
❖ Let superscript  denote infinitesimal shock  at date 

❖ Income at all other dates remains in steady state 

❖ Can iterate backward to get policy functions  and transition matrix over 
discretized states  at each date, which we represent as flattened vectors

❖ Distribution (over discretized states) and aggregate consumption given by

❖ Then calculate intertemporal MPCs  as 
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Insight: only need to iterate backward once!
❖ Iterate backward separately to recalculate  and  for each ? No!

❖ Why? Because only distance to the shock matters for policy function:

  for any 

❖ So, just consider one shock at maximal horizon , then write (same 
for )
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Very helpful, but still lots of work
❖ Backward iteration often costliest, so this is a big help!

❖ But still, for each , need to iterate forward on distribution 

❖ Economized on top steps but not bottom:
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What’s going on?
❖ We care about aggregate                     [or, more specifically, ]

❖ We have , but that’s not true for : generally 

❖ Theorem: to first order,

❖ Why? If shock happens at  instead of , one more period to anticipate it 

❖  affects date 0 policy  affects distribution date-1 distribution 

❖  carries over to date  distribution via  applications of 
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Effect on aggregates
❖ We have 

❖ Effect on  is therefore:

❖ The matrix  is closely related to Jacobian  via 

❖ Can reconstruct  from diagonals  (defining  for ):
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What is this F (“fake news matrix”)?
❖ For , we have 

❖ Why are  and  different?

❖ Because former has one extra period of anticipation

❖  is the effect at  of having thought, at 0, that there would be shock at 

❖ One interpretation: “fake news shock”

❖  is impulse response to shock at  announced at 0, rescinded at 1

t, s > 0 Ft,s = Mt,s − Mt−1,s−1
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Visualizing columns of F 
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Difference between  and …Mt,1 Mt−1,0
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… is exactly Ft,1
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Where we stand now
❖ Reduced finding Jacobian  to “fake news matrix” 

❖ Simple formula for  when :

❖ Problem: still seems like a lot of work to apply  repeatedly to each !

❖ Solution: evaluate formula from the left, not the right!

❖ Calculate “expectation functions”  only once, then evaluate 

❖  is expected  in  periods for a household who follows steady-state policy
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Cracked it open, now have four-step algorithm
❖ Step 1: iterate backward once from shock  to obtain all , 

❖ define  and 

❖ Step 2: repeatedly apply  to calculate expectation functions 

❖ Step 3: form fake news matrix, which is  and  ( )

❖ Step 4: calculate all  by cumulatively summing diagonals of 

❖ First 2 steps are , step 3 is  but can be written as giant matrix 
multiplication (super efficient, never the bottleneck), step 4 is 
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Summary: the “fake news algorithm”
❖ Most complex of ideas so far, but now sequence-space Jacobians are practical!

❖ Key step is only , far better than the  of state-space methods

❖ Example was iMPCs , but same method for any other Jacobian

❖ Various implementation details (for multiple inputs / outputs, numerical 
vs. automatic differentiation, …): see SSJ paper and appendix

❖ Reducing Jacobians to “fake news matrices” an interesting step in own right

❖ Isolate effects of information, useful for deviations from FIRE

O(NT) O(N3)
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What is a sequence-space solution?



Think about a stochastic economy
❖ So far we’ve done “MIT shocks”: one-time shocks starting from steady state, 

where new path becomes known at 

❖ What if shocks keep hitting the economy?

❖ Deficit-financed tax cut example: suppose that

where  , with  scaling size of shocks, and  symmetric around 0 and iid 
with variance 1, determined at date 

❖ What are implications for path of ?
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Sequence-space solution
❖ Realized output at date  depends on all past realized 

❖ In a stationary world, can write nonlinear solution (won’t formally derive):

which depends on realized , and also  because it scales future shocks

❖ Can then look to first order in  around :
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Simplifying insight
❖ To first order around :

❖ Insight: must have !

❖ Why? Symmetric shock distribution, doesn’t matter if we scale by  or !

❖ So to first order, effect of shocks is an MA process:
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Connection to MIT shocks
❖ An "MIT shock” is a one-time shock to steady state, with no uncertainty

❖ Corresponds to , where  and  for all 

❖ To first order in , the impulse response to MIT shock is therefore

where  on right is our sequence-space solution

❖ So we get first-order coefficients in general sequence-space solution from 
impulse to an MIT shock: MIT shock impulse = first-order MA coefficients

ϵ0 ≠ 0 σ = 0 ϵt = 0 t ≠ 0

ϵ0
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Simulation almost free
❖ Solve for impulse response to a small MIT shock

❖ e.g. what we saw in last lecture for fiscal policy, can use SSJs to solve

❖ Then, can simulate time series to first order in ,                                   [writing ]

for any path of , taking off all  from MIT shock impulse response

❖ Only do work to solve MIT shock once, then almost free!

❖ Insight of Boppart, Krusell, Mitman (2018)
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Example: start with MIT shock impulse response
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Then layer on top of itself to simulate
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Analytical second moments
❖ Often we simulate to obtain moments of the simulated data, e.g. variances and 

autocorrelations

❖ But Monte Carlo slow and introduces sampling error, better to write solution

and analytically find covariance

❖ Much faster in practice, can generalize to multiple series, speed up with FFT
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Summing up
❖ To first order:

Impulse response to MIT shock = MA coefficients in stochastic economy

❖ Can use to efficiently simulate or get second moments

❖ Either is almost free once we have the MIT shock impulse



Advantages of the sequence space and Jacobians



Any shock, any heterogeneity
❖ In fiscal policy lecture, we could solve

❖ Once we’ve calculated inverse asset Jacobian , we can solve for response 
to any time path of  and  almost instantly

❖ Similar “general equilibrium Jacobian” mapping in more complex cases

❖ Suppose we want 100 different types, over and above our heterogeneity

❖ Just take weighted average of the s to get economy-wide 

dY = A−1dB + dT

A−1

dB dT

A A



Some advantages of the sequence space: summary

1. Can get response to any shock

2. Can easily handle almost any heterogeneity

3. Can simulate, get any second moments, use to estimate model [to come!]

4. Can implement non-rational expectations [to come!]

5. Can get informative decompositions [e.g. ]dY = dG − MdT + MdY

(These advantages carry over in part to any MIT shock / sequence-
space method, but best by far when we’re using Jacobians!)


