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This lecture

Workshop so far: positive analysis for given shocks (to fiscal, monetary, TFP, etc)

Now: Estimation. What parameters best fit the aggregate data? What shocks
rationalize the observed time series?

Main reference: Auclert et al. (2021) for estimation in the sequence space

See also Herbst and Schorfheide (2015), Fernández-Villaverde et al. (2016) for
standard (state-space) DSGE estimation
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Roadmap

1 Quick recap on estimating state-space models

2 Estimating models in the sequence space

3 Estimating HANK
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Quick recap on estimating
state-space models



Estimation of state-space model

• Suppose you have a model in the “state space”

st = Φ1 (θ) st−1 +Φϵ (θ) ϵt ϵt ∼iid N (0, I) (1)
yt = Ψ0 (θ) + Ψ1 (θ) st (2)

• θ are model parameters (including s.s. and shock process parameters)
• st is a (ns × 1) vector of states (e.g. capital, the distribution of agents)
• yt is a (ny × 1) vector of observables (e.g. aggregate Y, C, etc)
• ϵt is an (nϵ × 1) vector of shock innovations
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What do we get from the state space representation?

For given θ (i.e., for a given calibration), standard outcomes of interest are:

1. Impulse responses

2. Second moments of observables

3. Forecast error covariance decomposition into shocks at any horizon h

4. Historical decompositions into likely shocks

5. The likelihood p (Y1:T|θ) given data Y1:T (obtained via Kalman filter)
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Estimating using the state space representation

We can also look for θ using one of the following estimation procedures:

1. Impulse response matching

2. Minimum distance estimation/simulated method of moments

3. Maximum likelihood estimation

4. Bayesian estimation
• Posterior mode estimation
• Description of the posterior distribution using MCMC
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Estimating het-agent models in the state space

• All these procedures are entirely standard, coded up in Dynare

• Estimation is fast provided that you have a fast way of getting to the
state-space solution (1)–(2) given your parameters θ

• Key problem with het agent models: the state space is very large!

• Specifically, when using the Reiter method, you need a Schur decomposition
to get to (1)–(2). This is a huge bottleneck when ns is big

• There is a large “model reduction” literature that proposes to approximate
the distribution to get around that problem. eg, Reiter (2010), Ahn et al.
(2018), Winberry (2018), Bayer and Luetticke (2020)

• Next: an alternative way of doing all of this with the sequence space
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Estimating models in the sequence
space



Alternative route to estimation

• Key idea: use the MA representation implied by the sequence space solution

• From this we can get immediately:

1. Impulse responses

2. Second moments of observables

3. Forecast error covariance decomposition into shocks

4. Historical decompositions into likely shocks

5. The likelihood p (Y1:T |θ) given data Y1:T

and so we can directly do impulse matching, minimium-distance estimation,
and likelihood-based estimation.

8



Alternative route to estimation

• Key idea: use the MA representation implied by the sequence space solution

• From this we can get immediately:

1. Impulse responses

2. Second moments of observables

3. Forecast error covariance decomposition into shocks

4. Historical decompositions into likely shocks

5. The likelihood p (Y1:T |θ) given data Y1:T

and so we can directly do impulse matching, minimium-distance estimation,
and likelihood-based estimation.

8



Impulse response matching

• Let’s start simple: impulse response matching

• Given θ, we know how to get the impulse response IRF (θ)
• Just use solve_steady_state, then solve_impulse_linear !

• How do we confront this to an identified ˆirf from the data?

• Natural answer: find θ to minimize distance, eg

θ̂ = argmin
(
IRF (θ)− ˆirf

)′
V−1

(
IRF (θ)− ˆirf

)′

where V contains, e.g., sample variances of ˆirf (eg, Christiano et al. 2005).

• Especially fast if, when θ changes...
• You don’t have to recalibrate the steady state
• (even better) You don’t have to recompute all Jacobians
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Second moments, minimum distance estimation

• Given a θ that includes a specification of aggregate shock processes, we can
get moments M (θ) of the data generated by our model

• Classic case: second moments of aggregates Cov(dXt,dYt′)
• Also: OLS regression coefficients, HP filtered moments, etc.
• A naive way would be to simulate (a better way just up next!)

• How do we confront this to empirical counterpart moments m̂?

• Minimum distance estimation: find θ to minimize distance, eg

θ̂ = argmin (M (θ)− m̂)′ V−1 (M (θ)− m̂)′

for V, can take the model’s E
[
M (θ)M (θ)′

]
• Sometimes also called simulated method of moments
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Obtaining second moments

• Suppose shocks {dZt} are MA(∞) in iid structural innovation vectors {ϵt}:

dZt =
∞∑
s=0

MZ
sϵt−s

• Any endogenous {dXt} is also MA(∞):

dXt =
∞∑
s=0

MX|Z
s ϵt−s

where, if G denotes the GE Jacobian mapping shock Z to endogenous X,

MX|Z = GX,ZMZ (3)

• All second moments given Z follow directly from the standard expression

Cov(dXt,dYt′)Z =
∞∑
s=0

MX|Z
s MY|Z

s+t′−t
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Covariance decomposition

• What if we have many shocks? Total covariance

Cov(dXt,dYt′) =
∑
Z

∞∑
s=0

MX|Z
s MY|Z

s+t′−t

• Immediate to then decompose this into the contribution of each shock:

Contribution of Z to covariance =
Cov(dXt,dYt′)Z
Cov(dXt,dYt′)

• Generalization: “forecast error covariance decomposition” at horizon h
• Instead of Cov(dXt,dYt′)Z, focus on Cov(eXt|t−h, e

Y
t|t−h)Z, where

eXt|t−h ≡ dXt − Et−h [dXt] =
h−1∑
s=0

MX
s ϵt−s

• Same, just replacing ∞ with h!

12



Covariance decomposition

• What if we have many shocks? Total covariance

Cov(dXt,dYt′) =
∑
Z

∞∑
s=0

MX|Z
s MY|Z

s+t′−t

• Immediate to then decompose this into the contribution of each shock:

Contribution of Z to covariance =
Cov(dXt,dYt′)Z
Cov(dXt,dYt′)

• Generalization: “forecast error covariance decomposition” at horizon h
• Instead of Cov(dXt,dYt′)Z, focus on Cov(eXt|t−h, e

Y
t|t−h)Z, where

eXt|t−h ≡ dXt − Et−h [dXt] =
h−1∑
s=0

MX
s ϵt−s

• Same, just replacing ∞ with h! 12



Modeling shocks, historical decompositions

• The model can have any ny and nϵ in principle
• Think RBC model with just TFP shocks: nϵ = 1, v.s. ny typically at least 8

• If nϵ < ny, the F.E. covariance matrix E
[
et|t−he′t|t−h

]
cannot have full rank

• From an estimation perspective this represents “obvious misspecification”

• The standard solution is to add primitive shocks and/or add measurement
error to observables, until nϵ ≥ ny. Common case is nϵ = ny.

• Then, given θ, can recursively back out most likely shocks ϵ0, ϵ1, . . . that solve

min
ϵt

∥∥∥ydatat − et|0 (θ) (ϵt)
∥∥∥2

• Feeding in one shock at a time, can then construct a historical
decomposition of the time series into shocks that explain it
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Likelihood function

• So far, we’ve learned how to do:

• Estimation: impulse response matching, “simulated” method of moments

(Sometimes called “limited information estimation”)

• Post-estimation: covariance decomposition, historical decomposition

• Suppose now that we can compute the likelihood p (Y1:T, θ) given θ

• Then, we can also do “full information estimation”
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Likelihood-based estimation methods

• Likelihood-based estimation: use p (Y1:T, θ) to estimate θ given data Y1:T

1. Maximum likelihood estimator:

θ̂ = argmaxp (Y1:T , θ)

2. Bayesian estimation given prior p (θ): find the distribution of the posterior

p (θ|Y1:T) =
p (Y1:T |θ)p (θ)

p (Y1:T)
∝ p (Y1:T , θ)p (θ)

• Finding the posterior mode is just like ML, except with p added

θ̂ = argmaxp (Y1:T, θ)p (θ)

• Tracing out the full distribution is more complicated. A typical procedure is
to construct a Markov chain whose stationary distribution is the posterior.
This is called MCMC. The most common procedure for how to move from θt
to θt+1 is known as Metropolis Hastings. See Herbst and Schorfheide (2015).
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Obtaining the likelihood function

• How do we get the likelihood? From the model’s covariances!
• Say observed data is Y. Stacking the covariances at all lags in V(θ), can

calculate log-likelihood of θ and Y, assuming Gaussian innovations, as:

L(Y; θ) = − 1
2 log detV(θ)− 1

2Y
′V(θ)−1Y

• No Kalman filter needed here!
• In practice, use a Cholesky decomposition of V to then quickly calculate
log detV and Y′V(θ)−1Y

• (Alternatives: Levinson recursion for V, Whittle approximation)
• See Auclert et al. (2021) for details
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Advantages of this approach

• Sequence space approach let us to do everything we can do in state space!
• For instance, you get the exact same results that Smets and Wouters got

with Dynare on their data, see Auclert et al. (2021)
• In addition, there are important speed benefits whenever estimating:

1. Shock processes: calculate GX,Z once, reuse to calculate MX many times

2. “Transition-relevant” parameters that do not affect the model steady state.
These do not require recalculating the Jacobian of the HA model. Just reuse
the same Jacobian and change the way in which these are combined into G!

3. (In some behavioral models, behavioral parameters also work.)
• Much more complex to estimate parameters that do affect the steady state

• See progress by Acharya et al. (2020) in this dimension
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Estimating HANK



Application: estimating HANK

• What does an estimated HANK model on US data look like?

• What does it tell us about the importance of price rigidities? the shocks that
drive the business cycle?

• Let’s now see for ourselves!

• We are going to estimate the canonical HANK model
• 3 shocks: TFP, government spending, and monetary policy
• 3 observables: output, inflation, interest rates

18



Model setup 1/2

• Canonical HANK model:

Vt (a−, e) = max
c1−σ

1 − σ
+ βE

[
Vt+1

(
a, e′

)
|e
]

c+ a = (1 + rt−1)a− + Zt
e1−λ

E [e1−λ]
(4)

a ≥ a

• Post-tax income Zt = Yt − Tt
• Output Yt = XtNt [Xt ≡TFP shock]
• Market clearing [Gt ≡Gov spending shock]

Ct + Gt = Yt = XtNt
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Model setup 2/2

• Sticky wages,

πwt = κw

(
v′ (Nt) /u′ (Ct)
(1 − λ) Zt/Nt

− µ

)
+ βπwt+1

• Flexible prices, Pt = Wt/Xt, so inflation is

1 + πt = (1 + πwt)
Xt−1
Xt

• Taylor rule for monetary policy [ϵt ≡Mon policy shock]

it = i+ ϕππt + ϵt

• Gov budget constraint and fiscal rule:

Bt = (1 + rt−1)Bt−1 + Gt − Tt
Tt = T + ϕT (Bt−1 − B) 20



Shocks

• Shock processes and priors as in Herbst and Schorfheide (2015)

logGt = ρG logGt−1 + ηGt

log Xt = ρx log Xt−1 + ηXt

ϵt = ρϵϵt−1 + ηϵt

Shock process parameters Model parameters
Param. Prior Distribution Param. Prior Distribution

ρG Uniform(0,1) κw Uniform(0,1)
ρϵ Uniform(0,1) ϕπ Gamma(1.5,0.25)
ρX Uniform(0,1) ϕT Uniform(0,1)
σG InvGamma(1,4)
σϵ InvGamma(0.4,4)
σX InvGamma(0.5,4) 21



Let’s see this in practice!

• Our plan:
1. Set up the model and calibrate it with arbitrary parameters (θ)

2. Check: simulate data from the model, then estimate on simulated data
3. Take data from US time series and

• Estimate shock processes
• Estimate all parameters

4. Post-estimation:
• Report the impulse responses at the posterior mode
• Do a historical decomposition of the observed time series into our shocks.
• Do a forecast error variance decomposition of Y, π, i into our shocks at various

horizons.

• See the lecture notebook!
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