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Methods so far: not very smooth!
❖ Discretize income process into finitely many exogenous states

❖ Theoretically, this leads to:

❖ Distribution consisting entirely of mass points

❖ Infinitely many kinks in consumption function (jumps in MPC)

❖ Our solution methods mirror this lack of smoothness:

❖ “Lottery method” for distribution as set of mass points

❖ Linear interpolation for marginal value function

❖ (Silly to use, e.g., smoother interpolation when true solution is non-smooth!)



Example of MPC jumps (from computation supplement)

Jump in MPC from 1 to 
~1/2 when going form 

constrained today 
(MPC=1) to level of 
assets where you’re 
likely constrained 

tomorrow (MPC = ~1/2)



Example of mass points (from computation supplement)

The “stairs" in the CDF 
for income y=1.39 reflect 

mass points in true 
distribution: how many 
periods have you had 
y=1.39 and built up 

assets after starting from 
the constraint?

(True distribution has 
only mass points, but 

lottery method smooths 
these out.)



Why might this be a problem?
❖ Jumps in MPCs can be annoying when, e.g., calibrating MPCs

❖ Erratic behavior is why solver takes so long to hit our calibration

❖ Steady-state behavior in general not always smooth as we vary parameters

❖ Analytical formulas that should hold don’t hold as exactly

❖ e.g. perturbing tomorrow’s value function should affect today by
, and roughly does, but imperfect

❖ Current methods fine for first-order aggregate perturbation, but we can’t do 
higher-order perturbation

dV(e, a) = β𝔼[dV(e′ , a′ (e, a))]



How do we solve this?
❖ Need smoother income process!

❖ Could avoid discretization entirely, and use true lognormal income process

❖ Downside: adds continuous state to model

❖ Alternative: keep discretized persistent income process, but add smooth iid 
component

❖ Since it’s iid, doesn’t make the state space larger

❖ If component large enough, solution well-behaved!



Smooth model: theory and implementation of 
backward iteration



Bellman equation almost unchanged
❖ Bellman equation looks almost exactly the same

                     

❖ Only difference is that we have an iid shock  multiplying income

❖ Need to take expectations over this 

❖ Can use numerical integration, but carefully, because  is kinked

V(e, a) = max
c,a′ 

u(c) + β𝔼[V(e′ , a′ ) |e]

s.t. a′ + c = (1 + r)a + Zξe a′ ≥ a

ξ

ξ

Va



Breaking Bellman into conceptual steps
❖ Step 1: discounting and expectations (unchanged!)

❖ Step 2: solve optimal consumption-savings given “cash on hand”

❖ Step 3: take expectations over cash on hand to recover new value function

Wt(e, a′ ) = β𝔼e′ |e[Vt+1(e′ , a′ )]

𝒱t(e, coh) = max
a′ ≥a

u(coh − a′ ) + Wt(e, a′ )

Vt(e, a) = 𝔼ξ𝒱t (e, (1 + rp
t )a + Ztξe)



Understanding consumption-savings step
❖ For simplicity, drop  in step 2 since it’s parallel in :

❖ We iterate over marginal values, and envelope condition  
means we just need consumption policy 

❖ Characterized by first-order condition 

❖ Can invert FOC to get  for each , giving consumption at “endogenous 
gridpoints” 

❖ Interpolate these observations  to get spline for consumption 

e e

𝒱t(coh) = max
a′ ≥a

u(coh − a′ ) + Wt(a′ )

𝒱′ t(coh) = u′ (c)
c = coh − a′ 

u′ (c) ≥ W′ (a′ )

c a′ 

coh = c + a′ 

(coh, c) c(coh)



Code implementing this step (smooth_sim.py)

Endogenous gridpoint 
 corresponding to 

 is exactly the 
cash-on-hand where 

constraint stops binding.

coh
a′ = a

Cubic spline in “q” 
represents consumption 
above that kink; below 
that kink, consumption 
is mechanical, c = coh



Expectations step
❖ Step 3: take expectations over cash on hand to recover new value function

❖ What distribution for mean-1 iid shock ?

❖ Common choice in income process would be lognormal

❖ We choose lognormal plus constant, so that some income is guaranteed

❖ Why? Subtle: don’t want “natural borrowing constraint” to be 0, otherwise 
no one would ever reach constraint

Vt(e, a) = 𝔼ξ𝒱t(e, (1 + rp
t )a + Ztξe

=coh

)

ξ



Expectations step, continued
❖ We iterate on derivatives with respect to  or  (drop  for simplicity)

❖ How do we take the expectation?

❖ Integrate separately on two sides of kink  where constraint hits:

❖ Here,  is from policy function spline we just obtained

coh a t

Va(e, a) = (1 + rp) ⋅ 𝔼coh𝒱coh(e, coh)

coh*

𝔼coh𝒱coh(e, coh) = ∫
coh*

0
f(coh)u′ (coh) + ∫

∞

coh*
f(coh)u′ (c(e, coh))

c(e, coh)



Code implementing this step (1/2)
“share” is minimum 
value of , which is 

share plus 1-share of 
lognormal with sd 

sigma. Together with 
assets, this makes 

“certain” component of 
cash on hand

ξ

At each point in space, 
then need to take 
expectations with 

respect to this 
lognormal.



Code implementing this step: part (2/2)

Below minimum endogenous gridpoint , , so just integrate that. Above, we integrate spline. Need to 
integrate separately on both sides of kink. Otherwise, with standard quadrature, won’t be smooth.

Brute-force here: using weights and nodes implied by Gauss-Legendre quadrature. (Could try more efficient , 
specialized quadrature. But adaptive quadrature provided by SciPy would be too slow.

coh* c = coh



Results: consumption policy in cash-on-hand

Still a kink in 
consumption, but after 

that it’s smooth—no 
“secondary kinks” 

implied by anticipation 
of hitting constraint 

tomorrow



Results: smooth MPC away from constraint

MPCs jump down from 
1 to less than 1 when 
constraint stops being 
binding, but after that 
they’re smooth—no 

further jumps!



Smooth model: distribution and forward 
iteration



Tracking the distribution
❖ Also need to keep track of the distribution

❖ Lottery method with mass points—not very smooth

❖ What to use now? Smooth cumulative distribution functions (CDFs)!

❖ These will start above zero, reflecting mass point at constraint

❖ But above that, they should be smooth!



Iterating on the distribution
❖ Go in opposite order to before, forward in time

❖ Three steps:

❖ Iterate forward from assets  to cash-on-hand , given iid 

❖ Iterate forward from cash-on-hand  to asset policy 

❖ Iterate forward on exogenous state  to                          [almost unchanged]

❖ Awesome fact about second step: we can use the endogenous gridpoints we 
already have!              [Closely related to Bayer, Luetticke, Weiss, Winkelmann]

❖ CDF over endogenous gridpoints  is the CDF over 

a coh ξ

coh a′ 

e e′ 

coh a′ 



Overall distribution iteration code



Step 1 (on iid shock) is mechanical integration



Resulting CDF of assets



Conclusion



Smooth model
❖ Figured out the basics of a “smooth” model, with smooth CDFs over assets 

and a smooth policy function (except at kink)

❖ Transitions, fake news algorithm, etc. work much the same as before

❖ Foundation of higher-order perturbation analysis (next lecture!)

❖ Analytical formulas hold much more exactly

❖ Much room for improvement!


