
Smooth Methods for the Standard
Incomplete Markets Model Matthew Rognlie

NBER Heterogeneous-Agent Macro Workshop, 2025

Methods so far: not very smooth!
❖ Discretize income process into finitely many exogenous states

❖ Theoretically, this leads to:

❖ Distribution consisting entirely of mass points

❖ Infinitely many kinks in consumption function (jumps in MPC)

❖ Our solution methods mirror this lack of smoothness:

❖ “Lottery method” for distribution as set of mass points

❖ Linear interpolation for marginal value function

❖ (Silly to use, e.g., smoother interpolation when true solution is non-smooth!)

Example of MPC jumps (from computation supplement)

Jump in MPC from 1 to
~1/2 when going form

constrained today
(MPC=1) to level of
assets where you’re
likely constrained

tomorrow (MPC = ~1/2)

Example of mass points (from computation supplement)

The “stairs" in the CDF
for income y=1.39 reflect

mass points in true
distribution: how many
periods have you had
y=1.39 and built up

assets after starting from
the constraint?

(True distribution has
only mass points, but

lottery method smooths
these out.)

Why might this be a problem?
❖ Jumps in MPCs can be annoying when, e.g., calibrating MPCs

❖ Erratic behavior is why solver takes so long to hit our calibration

❖ Steady-state behavior in general not always smooth as we vary parameters

❖ Analytical formulas that should hold don’t hold as exactly

❖ e.g. perturbing tomorrow’s value function should affect today by
, and roughly does, but imperfect

❖ Current methods fine for first-order aggregate perturbation, but we can’t do
higher-order perturbation

dV(e, a) = β𝔼[dV(e′ , a′ (e, a))]

How do we solve this?
❖ Need smoother income process!

❖ Could avoid discretization entirely, and use true lognormal income process

❖ Downside: adds continuous state to model

❖ Alternative: keep discretized persistent income process, but add smooth iid
component

❖ Since it’s iid, doesn’t make the state space larger

❖ If component large enough, solution well-behaved!

Smooth model: theory and implementation of
backward iteration

Bellman equation almost unchanged
❖ Bellman equation looks almost exactly the same

❖ Only difference is that we have an iid shock multiplying income

❖ Need to take expectations over this

❖ Can use numerical integration, but carefully, because is kinked

V(e, a) = max
c,a′

u(c) + β𝔼[V(e′ , a′) |e]

s.t. a′ + c = (1 + r)a + Zξe a′ ≥ a

ξ

ξ

Va

Breaking Bellman into conceptual steps
❖ Step 1: discounting and expectations (unchanged!)

❖ Step 2: solve optimal consumption-savings given “cash on hand”

❖ Step 3: take expectations over cash on hand to recover new value function

Wt(e, a′) = β𝔼e′ |e[Vt+1(e′ , a′)]

𝒱t(e, coh) = max
a′ ≥a

u(coh − a′) + Wt(e, a′)

Vt(e, a) = 𝔼ξ𝒱t (e, (1 + rp
t)a + Ztξe)

Understanding consumption-savings step
❖ For simplicity, drop in step 2 since it’s parallel in :

❖ We iterate over marginal values, and envelope condition
means we just need consumption policy

❖ Characterized by first-order condition

❖ Can invert FOC to get for each , giving consumption at “endogenous
gridpoints”

❖ Interpolate these observations to get spline for consumption

e e

𝒱t(coh) = max
a′ ≥a

u(coh − a′) + Wt(a′)

𝒱′ t(coh) = u′ (c)
c = coh − a′

u′ (c) ≥ W′ (a′)

c a′

coh = c + a′

(coh, c) c(coh)

Code implementing this step (smooth_sim.py)

Endogenous gridpoint
 corresponding to

 is exactly the
cash-on-hand where

constraint stops binding.

coh
a′ = a

Cubic spline in “q”
represents consumption
above that kink; below
that kink, consumption
is mechanical, c = coh

Expectations step
❖ Step 3: take expectations over cash on hand to recover new value function

❖ What distribution for mean-1 iid shock ?

❖ Common choice in income process would be lognormal

❖ We choose lognormal plus constant, so that some income is guaranteed

❖ Why? Subtle: don’t want “natural borrowing constraint” to be 0, otherwise
no one would ever reach constraint

Vt(e, a) = 𝔼ξ𝒱t(e, (1 + rp
t)a + Ztξe

=coh

)

ξ

Expectations step, continued
❖ We iterate on derivatives with respect to or (drop for simplicity)

❖ How do we take the expectation?

❖ Integrate separately on two sides of kink where constraint hits:

❖ Here, is from policy function spline we just obtained

coh a t

Va(e, a) = (1 + rp) ⋅ 𝔼coh𝒱coh(e, coh)

coh*

𝔼coh𝒱coh(e, coh) = ∫
coh*

0
f(coh)u′ (coh) + ∫

∞

coh*
f(coh)u′ (c(e, coh))

c(e, coh)

Code implementing this step (1/2)
“share” is minimum
value of , which is

share plus 1-share of
lognormal with sd

sigma. Together with
assets, this makes

“certain” component of
cash on hand

ξ

At each point in space,
then need to take
expectations with

respect to this
lognormal.

Code implementing this step: part (2/2)

Below minimum endogenous gridpoint , , so just integrate that. Above, we integrate spline. Need to
integrate separately on both sides of kink. Otherwise, with standard quadrature, won’t be smooth.

Brute-force here: using weights and nodes implied by Gauss-Legendre quadrature. (Could try more efficient ,
specialized quadrature. But adaptive quadrature provided by SciPy would be too slow.

coh* c = coh

Results: consumption policy in cash-on-hand

Still a kink in
consumption, but after

that it’s smooth—no
“secondary kinks”

implied by anticipation
of hitting constraint

tomorrow

Results: smooth MPC away from constraint

MPCs jump down from
1 to less than 1 when
constraint stops being
binding, but after that
they’re smooth—no

further jumps!

Smooth model: distribution and forward
iteration

Tracking the distribution
❖ Also need to keep track of the distribution

❖ Lottery method with mass points—not very smooth

❖ What to use now? Smooth cumulative distribution functions (CDFs)!

❖ These will start above zero, reflecting mass point at constraint

❖ But above that, they should be smooth!

Iterating on the distribution
❖ Go in opposite order to before, forward in time

❖ Three steps:

❖ Iterate forward from assets to cash-on-hand , given iid

❖ Iterate forward from cash-on-hand to asset policy

❖ Iterate forward on exogenous state to [almost unchanged]

❖ Awesome fact about second step: we can use the endogenous gridpoints we
already have! [Closely related to Bayer, Luetticke, Weiss, Winkelmann]

❖ CDF over endogenous gridpoints is the CDF over

a coh ξ

coh a′

e e′

coh a′

Overall distribution iteration code

Step 1 (on iid shock) is mechanical integration

Resulting CDF of assets

Conclusion

Smooth model
❖ Figured out the basics of a “smooth” model, with smooth CDFs over assets

and a smooth policy function (except at kink)

❖ Transitions, fake news algorithm, etc. work much the same as before

❖ Foundation of higher-order perturbation analysis (next lecture!)

❖ Analytical formulas hold much more exactly

❖ Much room for improvement!

