Smooth Methods for the Standard

Matthew Rognlie
Incomplete Markets Model :

NBER Heterogeneous-Agent Macro Workshop, 2025

Methods so far: not very smooth!

* Discretize income process into finitely many exogenous states

* Theoretically, this leads to:
* Distribution consisting entirely of mass points

* Infinitely many kinks in consumption function (jumps in MPC)

* Qur solution methods mirror this lack of smoothness:

* “Lottery method” for distribution as set of mass points
* Linear interpolation for marginal value function

« (Silly to use, e.g., smoother interpolation when true solution is non-smooth!)

Example of MPC jumps (from computation supplement)

Quarterly marginal propensities to consume by income state y(s)

1.O° — y=0.14
—— y=0.25
08- —— y =0.44 Jump in MPC from 1 to
. —— y =0.79 ~1/2 when going form
\ — y =1.39 constrained today
O 0.6 — y = 2.46 (MPC=1) to level of
= —— y=4.36 assets where you're
0.4- \ likely constrained
\ tomorrow (MPC = ~1/2)
0.2- —
0.0+ . |
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Assets

Example of mass points (from computation supplement)

1.0

0.8

0.6-

0.4-

0.2-

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

The “stairs" in the CDF
for income y=1.39 reflect
mass points in true
distribution: how many
periods have you had
y=1.39 and built up
assets after starting from
the constraint?

(True distribution has
only mass points, but
lottery method smooths
these out.)

Why might this be a problem?

“ Jumps in MPCs can be annoying when, e.g., calibrating MPCs
* Erratic behavior is why solver takes so long to hit our calibration
“ Steady-state behavior in general not always smooth as we vary parameters

“ Analytical formulas that should hold don’t hold as exactly

“ e.g. perturbing tomorrow’s value function should affect today by
dV(e,a) = PE[dV(e',a'(e,a))], and roughly does, but imperfect

Current methods fine for first-order aggregate perturbation, but we can’t do
higher-order perturbation

How do we solve this?

* Need smoother income process!
* Could avoid discretization entirely, and use true lognormal income process
+ Downside: adds continuous state to model

* Alternative: keep discretized persistent income process, but add smooth iid
component

“ Since it’s iid, doesn’t make the state space larger

“ If component large enough, solution well-behaved!

Smooth model: theory and implementation of
backward 1teration

Bellman equation almost unchanged

* Bellman equation looks almost exactly the

V(e,a) = maxu(c) + f

Cicl.

st.a+c=U+ra+”Ze

same

=[V(e',a’) | e]

a > a

« Only difference is that we have an iid shock & multiplying income

+ Need to take expectations over this &

+ Can use numerical integration, but carefully, because V is kinked

Breaking Bellman into conceptual steps

“ Step 1: discounting and expectations (unchanged!)
Wt(ea Cll) = ﬂ _e’\e[Vt+l(e/’ Cl/)]
* Step 2: solve optimal consumption-savings given “cash on hand”

7 (e,coh) = max u(coh —a’) + W(e, a’)

a'>a

* Step 3: take expectations over cash on hand to recover new value function

Vie,a) = E.7, (e, (1+r’)a + Ztcfe)

Understanding consumption-savings step

+ For simplicity, drop e in step 2 since it’s parallel in e:

7 (coh) = max u(coh — a’) + W(a’)

a'>a

+ We iterate over marginal values, and envelope condition 7" (coh) = u'(c)
means we just need consumption policy ¢ = coh — a’

« Characterized by first-order condition u'(c) > W'(a’)

« Can invert FOC to get ¢ for each a’, giving consumption at “endogenous
gridpoints” coh = ¢ + a’

« Interpolate these observations (coh, c¢) to get spline for consumption c(coh)

Code implementing this step (smooth_sim.py)

Part 2: mapping from endogenous coh grid to consumption

(constrained below coh_endog[0])
c_endog = Waxx(-eis)
coh_endog = c_endog + a_grid

q = np.empty_like(Va)
for s in range(len(y)):

qls]

spline.interp(coh_endog[s], c_endogl[s])

Endogenous gridpoint
coh corresponding to
a’ = ais exactly the
cash-on-hand where
constraint stops binding.

=)

Cubic spline in “q
represents consumption
above that kink; below
that kink, consumption
is mechanical, ¢ = coh

Expectations step

* Step 3: take expectations over cash on hand to recover new value function

Vie,a) = E:7 (e,(1 +r))a+ ZSe)

—/

Vo

=coh

+ What distribution for mean-1 iid shock &?
* Common choice in income process would be lognormal
* We choose lognormal plus constant, so that some income is guaranteed

* Why? Subtle: don’t want “natural borrowing constraint” to be 0, otherwise
no one would ever reach constraint

Expectations step, continued

+ We iterate on derivatives with respect to coh or a (drop ¢ for simplicity)

Via=0+r")-E.,7..(e coh)

* How do we take the expectation?

+ Integrate separately on two sides of kink coh™ where constraint hits:

coh®* 00

f(coh)u'(coh) + j f(coh)u'(c(e, coh))

coh®*

_COh%COh(e’ COh) — J'
0

+ Here, c(e, coh) is from policy function spline we just obtained

Code implementing this step (1/2)

“share” is minimum
value of &, which is
Part 3: integrate over lognormal part of income to get Va(s, a) Share plus 1'Share of
coh_certain, coh_lognormal_mu = coh_components(a_grid, y, r, sigma, share) lognormal with sd
| sigma. Together with
Va = np.empty_like(Va) :
for s in range('l_en(y)): aSSQtS, thlS makeS

for a in range(len(a_grid)): “certain” component of
Vals, al = expectation_lognormal_coh(coh_certain[s, al,

coh_endog(s], qls]l, coh_lognormal_muls], sigma, eis) cash on hand

Scale by 1+r to reflect returns

Va *= (1+r) At each point in space,

then need to take
expectations with
respect to this
lognormal.

Code implementing this step: part (2/2)

@njit
def expectation_lognormal_coh(coh_certain, coh_grid, q, mu, sigma, eis):
"""Take expectations of marg utility at coh_certain over lognormal part
of cash-on-hand, given spline g on coh_grid for unconstrained consumption™""

constrained part: marginal utility is cohxx(-1/eis)
w, X = utils.integrate_lognormal_interval(coh_certain, mu, sigma, @, coh_grid|[0])

constrained_part = w @ xxk(-1/eis)

unconstrained part: marginal utility is qg(coh)xx(-1/eis)
w, X = utils.integrate_lognormal_interval(coh_certain, mu, sigma, coh_grid[@], np.inf)
unconstrained_part = w @ spline.val _monotonic(q, coh_grid, x)xx(-1/eis)

return constrained_part + unconstrained_part

Below minimum endogenous gridpoint coh™, ¢ = coh, so just integrate that. Above, we integrate spline. Need to
integrate separately on both sides of kink. Otherwise, with standard quadrature, won’t be smooth.

Brute-force here: using weights and nodes implied by Gauss-Legendre quadrature. (Could try more efficient,
specialized quadrature. But adaptive quadrature provided by SciPy would be too slow.

Results: consumption policy in cash-on-hand

Consumption policy

2=

1.0 -

=
o0
|

=
@)
|

=
A
I

O
N

=
G

e=0.06
e=0.10
e=0.16
e=0.26
e=0.44
e=0.73

2 3
Cash on hand

Still a kink in
consumption, but after
that it's smooth—no
“secondary kinks”
implied by anticipation
of hitting constraint
tomorrow

Marginal propensity to consume

Results: smooth MPC away from constraint

1.0 - m— =006

= =010

— =16
0.8 - — =026

— e=0.44

= Ui MPCs jump down from
i 1 to less than 1 when

constraint stops being
o binding, but after that
they’re smooth—no
further jumps!

0.2 -

Cash on hand

Smooth model: distribution and forward
iteration

T'racking the distribution

* Also need to keep track of the distribution

“ Lottery method with mass points—not very smooth

+ What to use now? Smooth cumulative distribution functions (CDFs)!

* These will start above zero, reflecting mass point at constraint

“ But above that, they should be smooth!

Iterating on the distribution

* Go in opposite order to betore, forward in time

“ Three steps:

« Iterate forward from assets a to cash-on-hand coh, given iid &

« [terate forward from cash-on-hand coh to asset policy a’

+ Iterate forward on exogenous state e to e’ lalmost unchanged]

* Awesome fact about second step: we can use the endogenous gridpoints we
already have! |Closely related to Bayer, Luetticke, Weiss, Winkelmann]|

+ CDF over endogenous gridpoints coh is the CDF over a’

Overall distribution iteration code

def forward_iteration(F, coh_endog, Pi_F, a_grid, y, r, sigma, share):
return Pi_F @ forward_policy(F, coh_endog, a_grid, y, r, sigma, share)

@njit
def forward_policy(F, coh_endog, a_grid, y, r, sigma, share):
coh_certain, coh_lognormal_mu = coh_components(a_grid, y, r, sigma, share)

Fnew = np.empty_like(F)

for s in range(len(y)):
qF = spline.interp(a_grid, F[s])
get CDF on coh_endog, which maps directly to CDF on assets
Fnew[s] = iteration_lognormal_coh(qF, coh_certain[s], coh_endogls],
coh_lognormal_mul[s], sigma)

ensure that near the top of the distribution, we have exactly 1
w = utils.smooth_weight(a_grid)

Fnew = (1-w)*Fnew + w

return Fnew

Step 1 (on 11d shock) 1s mechanical integration

@njit
def iteration_lognormal_coh(gF, coh_certain, coh_endog, mu, sigma):
"""Iterate forward distribution from CDF spline gF on coh_certain,
integrating over lognormal part of cash-on-hand to get CDF on coh_endog"""
Fnew = np.zeros_like(coh_endog)
for i, coh in enumerate(coh_endog):
if coh >= coh_certain[0]:
w, X = utils.integrate_lognormal_interval(coh_certain[@], mu, sigma,
coh certain[@0], coh)
Fvals = spline.val_monotonic(qF, coh_certain, (coh + coh_certain[0] - x)
[::-1])[::-1].copy()
Fnew[i] = w @ Fvals

return Fnew

= T
o0 o
|

=
o

CDF (by different states e)

=
N

S
©

Resulung CDF of assets

=
A
I

Smooth model

* Figured out the basics of a “smooth” model, with smooth CDFs over assets
and a smooth policy function (except at kink)

* Transitions, fake news algorithm, etc. work much the same as before
* Foundation of higher-order perturbation analysis (next lecture!)

* Analytical formulas hold much more exactly

* Much room for improvement!

